exercise function of integral trigonometry

Integral Functions Trigonometry:
  1. sinudu =  − Cosu + C
  2. cosu du = sinu + C
  3. sec2udu = tanu + C
  4. csc2udu =  − cotu + C
  5. secutanudu = secu + C
  6. cscucotudu =  − cscu + C
  7. tanudu =  − ln|cosu| + C
  8. cotudu = ln|sin.u| + C
Some form of integration of trigonometry
sinnxdx dan cosnx dx
note: that completion of this form, if n is odd integer and positive number. After removing the factor sin x or cos x, then using equation:
sin2 + cos2x = 1, maka sin2x = 1 − cos2x dan cos2x = 1 − sin2x
Contoh :
1. Determine this example to function of integration of trigonometry
  • (sinx + cosx)dx
 = sinxxdx + cosxdx
 =  − cosx + sinx + C
 = (3cosx − 2sinx)dx = 3cosxdx − 2sinxdx
 = 3.sinx − 2.( − cosx) = 3sinx + 2cosx + C
 = (3cosx − 2sinx)dx = 3cosxdx − 2sinxdx
 = 3.sinx − 2.( − cosx) = 3sinx + 2cos + C

  • sin3xdx = sin2xsinxdx
 = (1 − cos2x)sinxdx
 =  − (1 − cos2x)d(cosx)
 =  − cosx + 13cos3x + C

0 Response to "exercise function of integral trigonometry"

Post a Comment