Integral Functions Trigonometry:
- ∫sinudu = − Cosu + C
- ∫cosu du = sinu + C
- ∫sec2udu = tanu + C
- ∫csc2udu = − cotu + C
- ∫secutanudu = secu + C
- ∫cscucotudu = − cscu + C
- ∫tanudu = − ln|cosu| + C
- ∫cotudu = ln|sin.u| + C
Some form of integration of trigonometry
∫sinnxdx dan ∫cosnx dx
note: that completion of this form, if n is odd integer and positive number. After removing the factor sin x or cos x, then using equation:
sin2 + cos2x = 1, maka sin2x = 1 − cos2x dan cos2x = 1 − sin2x
Contoh :
1. Determine this example to function of integration of trigonometry
- ∫(sinx + cosx)dx
= ∫sinxxdx + ∫cosxdx
= − cosx + sinx + C
= ∫(3cosx − 2sinx)dx = 3∫cosxdx − 2∫sinxdx
= 3.sinx − 2.( − cosx) = 3sinx + 2cosx + C
= ∫(3cosx − 2sinx)dx = 3∫cosxdx − 2∫sinxdx
= 3.sinx − 2.( − cosx) = 3sinx + 2cos + C
- ∫sin3xdx = ∫sin2xsinxdx
= ∫(1 − cos2x)sinxdx
= − ∫(1 − cos2x)d(cosx)
= − cosx + 13cos3x + C
0 Response to "exercise function of integral trigonometry"
Post a Comment